MTH 271 Formula sheet

Trigonometric Derivative and Integral Rules

1.
$$D[\sin u] = \cos u \, du$$

$$2. \ D\left[\cos u\right] = -\sin u \, du$$

3.
$$D[\tan u] = \sec^2 u \, du$$

$$4. D \left[\cot u \right] = -\csc^2 u \, du$$

5.
$$D[\sec u] = \sec u \tan u \, du$$

$$6. D\left[\csc u\right] = -\csc u \cot u \, du$$

7.
$$\int \sin u \, du = -\cos u + C$$
 8.
$$\int \cos u \, du = \sin u + C$$

8.
$$\int \cos u \, du = \sin u + C$$

$$9. \int \sec^2 u \, du = \tan u + C$$

9.
$$\int \sec^2 u \, du = \tan u + C$$
 10.
$$\int \csc^2 u \, du = -\cot u + C$$

11.
$$\int \sec u \tan u \, du = \sec u + C \qquad 12. \int \csc u \cot u \, du = -\csc u + C$$

12.
$$\int \csc u \cot u \, du = -\csc u + C$$

13.
$$\int \tan u \, du = -\ln|\cos u| + C$$

Sine and Cosine for common angles

Test 3: Derivative Tests

The first derivative test for increasing/decreasing.

Suppose that f(x) is continuous on [a, b] and differentiable on the open interval (a, b).

If f'(x) > 0 for all x in (a, b) then f(x) increases on [a, b].

If f'(x) < 0 for all x in (a, b) then f(x) decreases on [a, b].

If f'(x) = 0 for all x in (a, b) then f(x) is constant on [a, b].

The First Derivative Test for Local Extrema.

Let f(x) be a continuous function on [a, b] and c be a critical number in [a, b].

- 1. If $f'(x) \ge 0$ on (a, c) and $f'(x) \le 0$ on (c, b), then f(x) has a local maximum of y = f(c) at x = c.
- 2. If $f'(x) \leq 0$ on (a, c) and $f'(x) \geq 0$ on (c, b), then f(x) has a local minimum of y = f(c) at x = c.
- 3. If f'(x) does not change signs at x = c, then f(x) has no local extrema at x = c.

The Second Derivative Test for Concavity

Let f(x) be a twice differentiable function on an interval I.

- 1. If f''(x) > 0 on I, the graph of f(x) over I is concave up.
- 2. If f''(x) < 0 on I, the graph of f(x) over I is concave down.

Graphing using y' and y'':

- 1. Determine the points of discontinuity.
- 2. Determine the asymptotes (vertical, horizontal)
- 3. Determine the x- and y- intercepts.
- 4. Determine the critical point(s). (Set f'(x) = 0 and undefined).
- 5. Determine the intervals where the function f is increasing/decreasing.
- 6. Determine the local extrema.
- 7. Determine the possible point(s) of inflection. Set f''(x) = 0 and undefined).
- 8. Determine the intervals where the function f is concave up/down.
- 9. Determine the inflection point(s).
- 10. Determine extra point(s) if necessary.
- 11. Sketch the graph using the information obtained above.